Обогреватель своими руками: как сделать, варианты | IiNews

Самодельный обогреватель – в дом, на дачу, в гараж, для палатки в поход, для временного обогрева

Желающих сделать обогреватель своими руками не убывает: цены на фабричные приборы автономного обогрева не радуют, а их заявленные характеристики нередко оказываются завышенными сравнительно с реальными. Предъявлять претензии бесполезно: у производителей всегда есть железная отмазка – эффективность обогрева помещения сильно зависит от его теплотехнических свойств. Случаи, когда из производителя удавалось выдавить компенсацию за последствия несчастья, произошедшего по вине их изделия, также единичны. Правда, хотя бытовые обогреватели самостоятельно делать законом не запрещено, беда по вине самоделки будет серьезным отягчающим обстоятельством для ее изготовителя и владельца. Поэтому в данной статье далее описано, как правильно своими руками сделать безопасные бытовые обогреватели нескольких систем, по тепловой эффективности не уступающие лучшим промышленным образцам.

Любители-мастеровые городят обогреватели нередко весьма замысловатой конструкции, см. фото на рис. Порой они сделаны аккуратно. Но подавляющее большинство описанных в рунете самодельных отопительных приборов объединяет одно: высокая степень создаваемой ими опасности, гармонично сочетающаяся с полным несоответствием ожидаемых технических характеристик действительным. В первую очередь это относится к надежности, долговечности и транспортабельности.

Сделать обогреватель для дома, хоз. помещений или походный автономный для дачи, туризма и рыбалки возможно следующих систем (слева направо на рис.):

  • С непосредственным подогревом воздуха на естественной конвекции – электрокамин.
  • С принудительным обдувом нагревателя – тепловентилятор.
  • С косвенным подогревом воздуха, на естественной конвекции или с принудительным обдувом – масляный или водо-воздушный обогреватель.
  • В виде излучающей тепловые (инфракрасные, ИК) лучи поверхности – термопанель.
  • Пламенный автономный.

Последний от печи, плиты или водогрейного котла отличается тем, что чаще всего не имеет встроенной горелки/топки, а использует бросовое тепло отопительно-варочных приборов. Впрочем, грань тут весьма размыта: обогреватели на газе со встроенной горелкой есть в продаже и делаются самостоятельно. На многих из них можно готовить или разогревать пищу. Здесь в конце также будет описан пламенный обогреватель, который не на дровах, не на жидком топливе, не на газу и совсем уж точно не печка. А прочие рассматриваются в порядке убывания степени их безопасности и надежности. Которые тем не менее при надлежащем исполнении и у худших образцов вполне соответствуют требованиям в бытовым автономным отопительным приборам.

Это достаточно сложный и трудоемкий, но наиболее безопасный и эффективный тип бытового электрического обогревателя: термопанель двустороннего излучения на 400 Вт комнату 12 кв. м в бетонном доме нагревает с +15 до +18 градусов. Потребная мощность электрокамина в таком случае – 1200-1300 Вт. Расход денежных средств на самостоятельное изготовление термопанели невелик. Работают термопанели в т. наз. дальнем (более удаленном от красной области видимого спектра) или длинноволновом ИК, поэтому тепло дают мягкое, не жгучее. Вследствие относительно слабого нагрева теплоизлучающих элементов, если они выполнены правильно (см. ниже), эксплуатационный износ термопанелей практически отсутствует, а долговечность и надежность их ограничены непредусмотренными внешними воздействиями.

Теплоизлучащий элемент (излучатель) термопанели состоит из тонкого плоского проводника из материала с высоким удельным электрическим сопротивлением, зажатого между 2-мя обкладками – пластинами из диэлектрика, прозрачного для ИК. Нагреватели термопанелей делаются по тонкопленочной технологии, а обкладки – из специального пластикового композита. То и другое в домашних условиях недоступно, поэтому многие любители пытаются делать излучатели тепла на основе углеродного покрытия, зажатого между 2-мя стеклами (поз. 1 на рис. ниже) обычное силикатное стекло почти прозрачно для ИК.

Кроме того, пленка из сажи очень нестойка, быстро осыпается сама по себе. В эпоксидный клей для получение нужной мощности обогревателя нужно вводить до 2-х объемов углеродного наполнителя. Вообще-то можно и до 3-х, а если в смолу перед введением отвердителя добавить 5-10% по объему пластификатора – дибутилфталата – то и до 5 объемов наполнителя. Но готовый к работе (не затвердевший) компаунд получается густым и вязким, как пластилин или жирная глина, и нанести его тонкой пленкой нереально – эпоксидка липнет ко всему на свете, кроме парафиновых углеводородов и фторопласта. Шпатель из последнего сделать можно, но компаунд за ним потянется грядочками и комками.

Наконец, графитовая и угольная пыль – очень вредные для здоровья (о силикозе у шахтеров слыхали?) и чрезвычайно пачкающиеся вещества. Снять или отстирать их следы невозможно, запачканные вещи приходится выбрасывать, они пачкают другие. Кто хоть раз имел дело с графитовой смазкой (это тот же мелко дробленый графит) – как говорится, жив я буду, не забуду. Т.е., самодельные излучатели для термопанели нужно делать каким-то другим способом. К счастью, расчет показывает, что для этого пригодна старая добрая, проверенная многими десятилетиями и недорогая нихромовая проволока.

Сквозь 3-мм оконнон стекло без опасности его перегрева растрескивания проходит ок. 8,5 Вт/кв. дм ИК. Из пирога излучателя термопанели в обе стороны уйдет 17 Вт. Зададимся размерами излучателя 10х7 см (0,7 кв. дм), таких кусков можно нарезать из боя и отходов порезки практически в неограниченном количестве. Тогда один излучатель отдаст нам комнату 11,9 Вт.

Примем мощность обогревателя в 500 Вт (см. выше). Тогда понадобится 500/11,9 = 42,01 или 42 излучателя. Конструктивно панель будет представлять матрицу 6х7 излучателей размерами без обрамления 600х490 мм. Накинем на обрамление до 750х550 мм – по эргономике проходит, достаточно компактно.

Потребляемый от сети ток – 500 Вт/220 В = 2,27 А. Электрическое сопротивление всего обогревателя – 220 В/2,27 А = 96,97 или 97 Ом (закон Ома). Сопротивление одного излучателя – 97 Ом/42 = 2,31 Ом. Удельное сопротивление нихрома почти точно 1,0 (Ом*кв. мм)/м, но какого сечения и длины нужна проволока для одного излучателя? Поместится ли нихромовая змея (поз. 2 на рис.) между стеклами 10х7 см?

Устройство и чертежи самодельного инфракрасного панельного обогревателя

Плотность тока в открытых, т.е. контактирующих с воздухом, нихромовых электроспиралях – 12-18 А/кв. мм. Светятся они при этом от темно- до светло красного (600-800 градусов Цельсия). Примем 700 градусов при плотности тока 16 А/кв. мм. При условии свободного излучения ИК температура нихрома от плотности тока зависит примерно по корню квадратному. Уменьшим ее вдвое, до 8 А/кв. мм, получим рабочую температуру нихрома в 700/(2^2) = 175 градусов, для силикатного стекла безопасно. Температура наружной поверхности излучателя при этом (без учета теплоотвода за счет конвекции) не превысит 70 градусов при наружной в 20 градусов – годится и по теплопередаче мягким ИК, и по безопасности, если прикрыть излучающие поверхности защитной сеткой (см. далее).

Номинальный рабочий ток в 2,27 А даст сечение нихрома 2,27/8 = 0,28375 кв. мм. По школьной формуле площади окружности находим диаметр проволоки – 0,601 или 0,6 мм. С запасом примем его 0,7 мм, тогда мощность обогревателя будет 460 Вт, т.к. она зависит от его рабочего тока по квадрату. 460 Вт для обогрева хватит, достаточно было бы и 400 Вт, а долговечность прибора возрастет в несколько раз.

1 м нихромовой проволоки диаметром 0,7 мм имеет сопротивление 2,041 Ом (0,7 в квадрате = 0,49 1/0,49 = 2,0408…). Для получения сопротивления одного излучателя 2,31 Ом понадобится 2,31/2,041 = 1,132… или 1,13 м проволоки. Примем ширину нихромовой змейки в 5 см (по 1 см запаса с краев). На обворот 1-мм гвоздей (см. ниже) прибавим по 2,5 мм, итого 5,25 см на ветвь змейки. Ветвей понадобится 113 см/5,25 см = 21,52…, примем 21,5 ветви. Их общая ширина 22х0,07 см (диаметр проволоки) = 1,54 см. Примем длину змейки в 8 см (по 1 см запаса с коротких краев), тогда коэффициент укладки проволоки 1,54/8 = 0,1925. В паршивейших китайских маломощных силовых трансформаторах он ок. 0,25, т.е. нам на изгибы и промежутки между ветвями змейки места хватает с избытком. Уф-ф, принципиальные вопросы решены, можно переходить к ОКР (опытно-конструкторские работы) и техническому проектированию.

Теплопроводность и прозрачность для ИК силикатного стекла сильно меняются от марки к марке и от партии к партии. Поэтому сначала нужно будет сделать 1 (один) излучатель, см. ниже, и провести его испытания. В зависимости от их результата, возможно, придется изменить диаметр проволоки, так что не закупайте нихрома сразу много. При этом изменятся номинальный ток и мощность обогревателя:

  • Проволока 0,5 мм – 1,6 А, 350 Вт.
  • Проволока 0,6 мм – 1,9 А, 420 Вт.
  • Проволока 0,7 мм – 2,27 А, 500 Вт.
  • Проволока 0,8 мм – 2,4 А, 530 Вт.
  • Проволока 0,9 мм – 2,6 А, 570 Вт.

Примечание: кто грамотный в электричестве – номинальный ток, как видите, меняется не по квадрату диаметра провода. Почему? С одной стороны, у тонких проводов относительно большая излучающая поверхность. С другой – при толстом проводе нельзя превышать допустимую пропускаемую стеклом мощность ИК.

Для испытаний готовый образец устанавливают вертикально, подперев чем-то негорючим и термостойким, на несгораемую поверхность. Затем подают в него номинальный ток от регулируемого источника питания (ИП) на 3 А и более или ЛАТРа. В последнем случае оставлять образец без присмотра нельзя все время испытаний! Ток контролируется цифровым тестером, щупы которого должны быть плотно сжаты с токоведущими проводами винтом с гайкой и шайбами. Если опытный образец запитан от ЛАТРа, тестер должен измерять силу переменного тока (предел AC 3А или AC 5А).

Прежде всего нужно проверить, как ведет себя стекло. Если оно в течение 20-30 мин перегревается и трескается, то, возможно, непригодна вся партия. Напр., в стекла б/у со временем въедается пыль и грязь. Резать их – сущая мука и гибель алмазного стеклореза. А трескаются такие стекла при значительно более слабом нагреве, чем новые того же сорта.

Далее спустя 1-1,5 часа проверяется сила излучения ИК. Температура стекла тут не показатель, т.к. основную часть ИК излучает нихром. Поскольку фотометра с ИК фильтром у вас скорее всего не найдется, придется проверять ладонями: их держат параллельно излучающим поверхностям на расстоянии ок. 15 см от них не менее 3-х мин. Затем в течение 5-10 мин должно чувствоваться ровное мягкое тепло. Если ИК от излучателя начинает жечь кожу сразу, диаметр нихрома уменьшаем. Если спустя 15-20 мин легкого жжения (как на солнечном пригреве в середине лета) не чувствуется, нихром нужно взять толще.

Устройство излучателя самодельного панельного обогревателя дано на поз. 2 рис. выше нихромовая змейка показана условно. Нарезанные в размер стеклянные обкладки очищаются от загрязнений и моются щеткой в воде с добавкой любого моющего для посуды, затем также со щеткой промываются под струей чистой воды. Уши – контактные ламели размером 25х50 мм из медной фольги – приклеиваются к одной из обкладок эпоксидным клеем или мгновенным цианоакрилатным (суперклеем). Заход уха на обкладку – 5 мм наружу торчит 20 мм. Чтобы ламель не отвалилась, пока клей не схватился, под нее подкладывают что-нибудь толщиной 3 мм (толщина стекла обкладки).

Далее нужно сформировать самую змейку из нихромовой проволоки. Делается это на шаблоне-оправке, схема которой дана на поз. 3, а подробный чертеж – на рис. здесь. Хвостики для отжига змейки (см. ниже) нужно дать от 5 см. Обкусанные концы гвоздей зашлифовываются до округлости на наждачном камне, иначе готовую змейку снять, не смяв, будет невозможно.

Чертеж шаблона для формирования плоского нихромового нагревательного элемента

Нихром довольно упруг, потому навитую на шаблон проволоку нужно отжечь, чтобы змейка держала форму. Делать это следует в полутьме или при слабом освещении. На змейку подают напряжение 5-6 В от ИП не менее чем на 3 А (вот для чего на дереве нужна огнеупорная накладка). Когда нихром засветится вишневым, ток выключают, дают нити полностью остыть, и повторяют эту процедуру 3-4 раза.

Следующий шаг – змейку прижимают пальцами через наложенную на нее фанерную полоску и аккуратно разматывают навитые на 2-мм гвозди хвостики. Каждый хвостик выпрямляют и формуют: на 2-мм гвозде остается четверть витка, а остальное обрезают вровень в краем шаблона. Остаток хвостика в 5 мм зачищают острым ножом.

Теперь змейку нужно снять с оправки, не покорежив, и закрепить на подложке, обеспечив надежный электрический контакт выводов с ламелями. Снимают парой ножей: их лезвия подсовывают снаружи под изгибы ветвей на 1-мм гвоздях, аккуратно поддевают и поднимают извитую нить нагревателя. Затем змейку кладут на подложку и немного подгибают, если требуется, выводы, чтобы легли прим. посередине ламелей.

Металлическими припоями с неактивным флюсом нихром не паяется, а остатки активного флюса со временем могут разъесть контакт. Поэтому нихром к меди паяют т. наз. жидким припоем – токопроводящей пастой продается она в радиомагазинах. На контакт зачищенного нихрома с медью выдавливают капельку жидкого припоя и через кусочек полиэтиленовой пленки придавливают пальцем, чтобы паста не выпирала вверх от проволоки. Можно сразу вместо пальца придавить каким-то плоским грузиком. Снимают пригруз и пленку после отвердевания пасты, от часа до суток (время указывается на тюбике).

Застыл припой – пришло время собирать излучатель. Вдоль посередине выдавливаем на змейку тонкую, не толще 1,5 мм, колбаску обычного строительного силиконового герметика, это предотвратит сползание и замыкание изгибов проволоки. После этого тот же герметик выдавливаем валиком уже потолще, 3-4 мм, по контуру подложки, отступив от края прим. на 5 мм. Накладываем покровное стекло и очень аккуратно, чтобы не сползло вбок и не потянуло за собой змейку, придавливаем, пока не ляжет плотно, и откладываем излучатель на сушку.

Скорость высыхания силикона – 2 мм в сутки, но спустя 3-4 дня, как может показаться, брать излучатель дальше в работу еще нельзя, нужно дать высохнуть внутреннему валику, фиксирующему изгибы. Понадобится на это прим. неделя. Если делается много излучателей уже для рабочего обогревателя, их можно сушить штабелем. Нижний слой раскладывают на полиэтиленовой пленке, ею же застилают сверху. Элементы след. слоя укладывают поперек нижележащих, и т.д., разделяя слои пленкой. Штабель, для гарантии, сушится 2 недели. После сушки выступившие излишки силикона срезают лезвием безопасной бритвы или острым монтажным ножом. С контактных ламелей силиконовые наплывы также нужно полностью удалить, см. ниже!

Пока излучатели сохнут, делаем из реек твердого дерева (дуб, бук, граб) 2 одинаковые рамки (поз. 4 на рис. со схемой панельного обогревателя). Соединения выполняются врезкой вполдерева и скрепляются мелкими саморезами. МФД, фанера и древесные материалы на синтетических связующих (ДСП, OSB) не годятся, т.к. длительный нагрев, пусть и не сильный, им категорически противопоказан. Если у вас есть возможность вырезать детали рамок из текстолита или стеклотекстолита – вообще отлично, но эбонит, бакелит, текстолит, карболит и термопластичные пластики непригодны. Деревянные детали перед сборкой дважды пропитываются водно-полимерной эмульсией или разбавленным вдвое акриловым лаком на водной основе.

В одну из рамок укладываются готовые излучатели (поз. 5). Перекрывающиеся ламели электрически соединяются каплями жидкого припоя, как и перемычки на боковинах, образующие последовательное соединение всех излучателей. Подводящие провода (от 0,75 кв. мм) лучше припаять обычным легкоплавким припоем (напр. ПОС-61) с неактивной флюс-пастой (состав: канифоль, этиловый спирт, ланолин, см. на пузырьке или тюбике). Паяльник – 60-80 Вт, но паять нужно быстро, чтобы излучатель не расклеился.

Следующий шаг на этом этапе – накладываем вторую рамку и отмечаем на ней, где пришлись подводящие провода, под них нужно будет вырезать канавки. После этого раму с излучателями собираем на мелких саморезах, поз. 6. Приглядитесь внимательнее к расположению точек крепления: они не должны прийтись на токоведущие детали, иначе головки крепежа окажутся под напряжением! Также, чтобы исключить случайное прикосновение к краям ламелей, все торцы панели оклеиваются негорючим пластиком толщиной от 1 мм, напр. ПВХ с наполнителем из мела от кабельных каналов (коробов для проводки). С этой же целью, и для большей прочности конструкции, на все стыки стекла с деталями рамы наносится силиконовый герметик.

Завершающие шаги, во-первых, установка ножек высотой от 100 мм. Эскиз деревянной ножки панельного обогревателя дан на поз. 7. Второе – наложение на боковины панели защитной стальной сетки из тонкой проволоки с ячеей 3-5 мм. Третье – оформление кабельного ввода пластиковой коробокой: в ней размещаются контактные клеммы, световой индикатор. Возможно – тиристорный регулятор напряжения и защитное термореле. Все, можно включать и греться.

Если мощность описанной термопанели не превышает 350 Вт, из нее можно сделать обогреватель-картину. Для этого на тыльную сторону накладывают фольгоизол, то самый, который используется для теплоизоляции. Фольгированная его сторона должна быть обращена к панели, а пористая пластиковая наружу. Лицевую сторону обогревателя оформляют фрагментом фотообоев на пластике тонкий пластик – не ахти какое препятствие для ИК. Чтобы картина-обогреватель лучше грела, вешать ее на стену нужно под углом ок. 20 градусов.

Как видим, самодельный панельный обогреватель дело достаточно трудоемкое. Нельзя ли упростить работу, применив вместо нихрома, скажем, алюминиевую фольгу? Толщина фольги рукава для запекания ок. 0,1 мм, вроде бы уже тонкая пленка. Нет, дело тут не в толщине пленки, а в удельном сопротивлении ее материала. У алюминия оно низкое, 0,028 (Ом*кв. мм)/м. Не приводя подробных (и очень скучных) расчетов, укажем их результат: площадь термопанели на мощность 500 Вт на алюминиевой пленке толщиной 0,1 мм оказывается почти 4 кв. м. Толстовата все же пленочка оказалась.

Самодельный тепловентилятор может быть достаточно безопасным в низковольтном, на 12 В, исполнении. Мощности свыше 150-200 Вт от него не добиться, слишком большой, тяжелый и дорогой понадобится понижающий трансформатор или ИП. Однако 100-120 Вт как раз хватит, чтобы держать в подвале или погребе небольшой плюс всю зиму, что гарантирует от промерзших овощей и полопавшихся от мороза банок с домашними заготовками, а 12 В – напряжение, допустимое в помещениях с любой степенью опасности поражения электротоком. Большее в подвал/погреб и подавать нельзя, т.к. они по электротехнической классификации особо опасные.

Основа обогревателя-тепловентилятора на 12 В – обычный красный рабочий пустотный (пустотелый) кирпич. Лучше всего подойдет полуторный толщиной 88 мм (вверху слева на рис.), но сгодится и двойной толщиной в 125 мм (там же внизу). Главное – чтобы пустоты были сквозными и одинаковыми.

Устройство самодельного обогревателя на 12 В для подвала и гаража.

Устройство кирпичного тепловентилятора на 12 В для подвала дано там же на рис. Посчитаем нихромовые спирали-нагреватели для него. Берем мощность 120 Вт, это с некоторым запасом. Ток, соотв., 10 А, сопротивление нагревателя 1,2 Ом. С одной стороны, спирали продуваются. С другой – этот обогреватель должен долгое время работать без присмотра в довольно тяжелых условиях. Поэтому все спирали лучше включить параллельно: перегорит одна, остальные вытянут. И мощность регулировать удобно – достаточно отключить 1-2-несколько спиралей.

В пустотном кирпиче 24 канала. Ток спирали каждого канала 10/24 = 0,42 А. Мало, нихром нужен очень тонкий и, значит, ненадежный. Этот вариант сгодился бы для бытового тепловентилятора до 1 кВт и более. Тогда нагреватель нужно рассчитывать, как описано выше, на плотность тока в 12-15 А/кв. мм, и поделить получившуюся длину проволоки на 24. К каждому отрезку добавляется по 20 см на 10-см соединительные хвостики, а середина свивается в спираль диаметром 15-25 мм. Хвостиками все спирали соединяются последовательно при помощи хомутиков из медной фольги: ее ленту шириной 30-35 мм навивают в 2-3 слоя на сложенные нихромовые проволоки и закручивают на 3-5 витков парой малых пассатижей. Для питания вентиляторов придется поставить маломощный трансформатор на 12 В. Такой обогреватель хорошо подойдет для гаража или прогрева автомобиля перед поездкой: как все тепловентиляторы, он быстро прогревает середину помещения, не тратя тепло на теплопотери сквозь стены.

Примечание: компьютерные вентиляторы часто называют кулерами (досл. – охладителями). На самом деле кулер это все охлаждающее устройство. Напр., кулер процессора – ребристый радиатор в блоке с вентилятором. А вентилятор сам по себе он и в Америке вентилятор.

Но вернемся в подвал. Посмотрим, сколько нихрома понадобится на уменьшенную до 10 А/кв. мм по соображениям надежности плотность тока. Сечение провода, ясно без расчетов – 1 кв. мм. Диаметр, см. расчеты выше – 1,3 мм. Такой нихром в продаже находится без затруднений. Необходимая длина на сопротивление 1,2 Ом – 1,2 м. А какова общая длина каналов в кирпиче? Толщину берем полуторную (меньше весит), 0,088 м. 0,088х24 = 2,188. Так нам достаточно просто продеть отрезок нихрома сквозь пустоты кирпича. Можно через одну, т.к. каналов по расчету нужно 1,2/0,088 = 13,(67), т.е. 14-ти хватит. Вот и обогрели подвал. И вполне надежно – такой толстый нихром и крепкая кислота не скоро разъест.

Примечание: кирпич в корпусе фиксируется мелкими стальными уголками на болтиках. В мощную цепь 12 В обязательно должно быть включено автоматическое защитное устройство, напр. пробка-автомат на 25 А. Недорого и вполне надежно.

Трансформатор на железе для обогрева подвала лучше взять (сделать) с отводами мощной обмотки на 6, 9, 12, 15 и 18 В, это позволит регулировать мощность обогрева в широких пределах. 1,2 мм нихром с обдувом потянет и 25-30 А. Для питания вентиляторов тогда нужна отдельная обмотка на 12 В 0,5 А и тоже отдельный кабель с тонкими жилами. Для питания нагревателя нужны жилы от 3,5 кв. мм. Мощный кабель может быть самый дрянной – ПУНП, КГ, на 12 В утечек и пробоя можно не опасаться.

Может быть, у вас нет возможности применить понижающий трансформатор, но завалялся импульсный блок питания (ИБП) от негодного компьютера. Его 5 В канала по мощности хватит стандарт – 5 В 20 А. Тогда, во-первых, нужно пересчитать нагреватель на 5 В и мощность 85-90 Вт, чтобы не перегружать ИБП (диаметр провода выходит 1,8 мм длина та же). Во-вторых, для питания 5 В нужно соединить вместе все красные провода (+5 В) и столько же черных (общий провод GND). 12 В для вентиляторов берут с любого желтого провода (+12 В) и любого черного. В-третьих, нужно закоротить на общий провод цепь логического запуска PC-ON, иначе ИБП просто не включится. Обычно провод PC-ON зеленый, но нужно проверить: снять с ИБП кожух и посмотреть обозначения на плате, сверху или со стороны монтажа.

Для обогревателей след. типов придется покупать ТЭН: электроприборы на 220 В с открытыми нагревателями чрезвычайно опасны. Тут, простите за выражение, нужно думать в первую очередь о собственной шкуре с имуществом, есть формальный запрет или нет. С 12-вольтовыми приборами легче: по статистике, степень опасности уменьшается пропорционально квадрату отношения напряжений питания.

Если у вас уже есть электрокамин, но греет плоховато, имеет смысл заменить в нем простой воздушный ТЭН с гладкой поверхностью (поз. 1 на рис.) на оребренный, поз. 2. Характер конвекции тогда существенно изменится (см. ниже) и обогрев улучшится при мощности оребренного ТЭНа в 80-85% от гладкого.

Патронный ТЭН в корпусе из нержавеющей стали (поз. 3) может греть и воду, и масло в баке из любого конструкционного материала. Будете брать такой – обязательно проверьте, чтобы в комплекте были прокладки из маслотермобензостойкой резины или силиконовые.

Медный водяной ТЭН для бойлера снабжается трубкой для термодатчика и магниевым протектором, поз. 4, что хорошо. Но греть им можно только воду и только в баке из нержавейки либо эмалированном. Теплоемкость масла много меньше, чем у воды, и в масле корпус медного ТЭНа скоро прогорит. Последствия – до тяжелейших и фатальных. Если бак из алюминия или обычной конструкционной стали, то электрокоррозия вследствие наличия контактной разности потенциалов металлов очень быстро съест протектор, а вслед за тем проест корпус ТЭНа.

Т. наз. сухие ТЭНы (поз. 5), как и патронные, способны греть и масло, и воду без дополнительных мер защиты. Кроме того, их нагревательный элемент можно менять, не вскрывая бака и не сливая оттуда жидкость. Недостаток один – очень дороги.

Схема электрокамина с воздушным ТЭНом и двойным контуром конвекции

Усовершенствовать обычный электрокамин, или сделать себе свой эффективный на основе покупного ТЭНа можно с помощью дополнительного кожуха, создающего вторичный контур конвекции. Из обычного электрокамина, во-первых, воздух идет вверх довольно горячей, но слабой струей. Она быстро полнимается к потолку и греет через него более пол соседей, чердак или крышу, чем хозяйскую комнату. Во-вторых, идущее вниз от ТЭНа ИК таким же образом греет соседей снизу, подпол или подвал.

В конструкции, показанной на рис. справа, ИК, направленное вниз, отражается во внешний кожух и греет воздух в нем. Тягу еще более усиливает подсос горячим воздухом из внутреннего кожуха менее нагретого из внешнего в сужении последнего. В результате воздух из электрокамина с двойным контуром конвекции выходит широкой умеренно нагретой струей, расплывается в стороны, не доходя до потолка, и эффективно обогревает помещение.

Описанный выше эффект дают также масляные и водо-воздушные обогреватели, благодаря чему и пользуются популярностью. Масляные обогреватели промышленного производства делаются герметичными с несменяемой заправкой, но повторять из самостоятельно ни в коем случае не рекомендуется. Без точного расчета объема корпуса, внутренней конвекции в нем и степени заполнения маслом возможен разрыв корпуса, авария электросети, вылив и загорание масла. Недолив так же опасен, как перезалив: в последнем случае масло просто рвет корпус давлением при нагреве, а в первом сначала закипает. Если же сделать корпус заведомо большего объема, то обогреватель греть будет несоразмерно слабо сравнительно с потреблением электроэнергии.

В любительских условиях возможно сооружение масляного или водо-воздушного обогревателя открытого типа с расширительным баком. Схема его устройства приведена на рис. Когда-то таких делали довольно много, для гаражей. Воздух от радиатора идет нагретым слабо, разность температур внутри и снаружи поддерживается минимальной, отчего и теплопотери уменьшаются. Но с появлением панельных обогревателей масляные самоделки сходят на нет: термопанели лучше во всех отношениях и вполне безопасны.

Устройство масляного обогревателя с расширительным баком

Если же вы все-таки решите делать себе масляный обогреватель, учтите – он должен быть надежно заземлен, а заполнять его нужно только и только очень дорогим трансформаторным маслом. Любое жидкое масло постепенно битуминизируется. Повышение температуры ускоряет этот процесс. Моторные масла разрабатываются с учетом того, что масло циркулирует среди движущихся деталей под воздействием вибраций. Битуминозные частицы в нем образуют взвесь, только загрязняющую масло, почему его и приходится время от времени менять. В обогревателе же им ничто не помешает оседать нагаром на ТЭНе и в трубках, отчего ТЭН перегревается. Если же он лопнет – последствия аварий масляных обогревателей почти всегда оказываются очень тяжелыми. Трансформаторное масло потому и дорого, что битуминозные частицы в нем не оседают в нагар. Источников сырья для минерального трансформаторного масла в мире мало, а себестоимость синтетического высока.

Мощные газовые обогреватели для больших помещений с каталитическим дожиганием дороги, но рекордно экономичны и эффективны. В любительских условиях их воспроизвести невозможно: нужна микроперфорированная керамическая пластина с платиновым напылением в порах и специальная горелка из деталей, выполненных с прецизионной точностью. В розницу то или другое обойдется дороже, чем новый обогреватель с гарантией.

Походные мини-обогреватели на газе

Туристы, охотники и рыболовы давно придумали обогреватели-дожигатели малой мощности в виде приставки к походному примусу. Выпускаются такие и в промышленных масштабах, поз. 1 на рис. Эффективность их не ахти, но палатку обогреть до отбоя в спальные мешки хватает. Конструкция дожигателя довольно сложна (поз. 2), поэтому и стоят фабричные палаточные обогреватели недешево. Любители таких делают тоже немало, из консервных банок или, напр. из автомобильных масляных фильтров. В этом случае обогреватель может работать и от газового пламени, и от свечи, см. видео:

Видео: портативные обогреватели из масляного фильтра

С появлением в широком обиходе жаропрочных и жаростойких сталей любители побывать на природе все больше отдают предпочтение газовым походным обогревателям с дожиганием на сетке, поз. 3 и 4 – они экономичнее и греют лучше. И опять-таки, любительское творчество объединило тот и другой варианты в мини-обогреватель комбинированного типа, поз. 5., способный работать и от газовой горелки, и от свечи.

Чертеж мини-обогревателя из подручных материалов для дачи

Чертеж самодельного мини-обогревателя на дожигании приведен на рис. справа. Если он используется эпизодически или временно, то может быть целиком выполнен из консервных банок. На увеличенный вариант для дачи пойдут банки от томатной пасты и т.п. Замена перфорированной крышки сетчатой существенно уменьшает время прогрева и расход топлива. Больший и очень долговечный вариант можно собрать из автомобильных дисков, см. след. ролик. Это уже считай что печка, т.к. на нем можно готовить.

От свечи

Осветительная свеча, между прочим, довольно сильный источник тепла. Долгое время это ее свойство считалось помехой: в старину на балах дамы и кавалеры обливались потом, косметика текла, пудра сбивалась комьями. Как они после этого еще и амуры крутили, без горячего водопровода и душа, современному человеку понять трудно.

Домашний мини-обогреватель от свечи

Тепло от свечи в холодном помещении пропадает зря по той же причине, по которой одноконтурный конвекционный обогреватель греет плоховато: горячие отходящие газы слишком быстро поднимаются вверх и остывают, давая копоть. Между тем заставить их догорать и давать тепло проще, чем газовое пламя, см. рис. В этой системе 3-контурный дожигатель собран из керамических цветочных горшков обожженная глина – хороший ИК-излучатель. Предназначен обогреватель на свече для местного обогрева, скажем, чтобы не дрожать, сидя за компьютером, но тепла всего от одной свечки дает удивительно много. Нужно только, пользуясь им, приоткрывать форточку, а ложась спать обязательно гасить свечу: кислорода на горение она потребляет тоже много.

Напоследок – вариант обогревателя, не требующего никаких эксплуатационных расходов. Если вы живете в бетонном доме, а топят слабо, попробуйте, прежде чем покупать или делать обогреватель, засунуть за батареи листы фольгоизола, он отражает обратно более 80% ИК, для которого железобетон полупрозрачен. Вынос листа за контур радиатора отопления – от 10 см. Фольгированная поверхность должна быть обращена в помещение, а пластиковая – к стене. Вполне возможно, что самодельного обогревателя-отражателя и хватит, чтобы в квартире установилась комфортная температура.

Прочитали ? Поделитесь с друзьями. Спасибо!

Читайте также:


Загрузка...

Похожие статьи


Добавить комментарий

AйЯй Hoвocти 2018 Обратная связь:support@iinews.ru | Копирование материала разрешено только с обратной активной ссылкой на АйЯй Новости !